Abraxis Method 546 Guide
Analysis Batch Controls
Laboratory Reagent Blank

• Description: Control that is used to determine if any interferences are introduced during analysis. It is an aliquot of reagent water that is lysed and filtered using the same procedure used for sample processing

• Preparation Guidelines
 • If drinking water samples are being analyzed with the batch, use DI/Distilled water treated appropriately with sodium thiosulfate
 • If only testing raw water, do not treat DI/Distilled water with sodium thiosulfate

• Location on plate: LRB will be analyzed twice, once immediately after the standards and once at the end of the plate.

• Acceptable range: Must be ≤ 0.15 ppb (less than one half the MRL)
Analysis Batch Controls

Laboratory Reagent Blank: Preparation

Measure 10 mL of DI H$_2$O into two 20 mL vials

Three Freeze/Thaw Cycles

Filter each separately with glass fiber filters
Analysis Batch Controls

Low-CV

- Description: Control that is at a concentration that is less than or equal to the MRL (0.3 ppb) which is used to confirm the accuracy of the standard curve near the MRL.
- Preparation Guidelines
 - Do not freeze/thaw or filter the Low-CV
- Preparation:
 - May be obtained by Abraxis in the Method 546 Accessory Pack
- Location on plate: Low-CV will be analyzed once, immediately after the first LRB
- Acceptable range: Must be ≥ 0.15 or ≤ 0.45 ppb
Analysis Batch Controls
Low-CV: Preparation

Measure 10 mL of DI H₂O into a single 20 mL vial

Add 60 uL of the Abraxis 50 ppb standard into the vial

Vortex or invert repeatedly to mix

DO NOT FREEZE/THAW OR FILTER THE LOW-CV
Analysis Batch Controls
Laboratory Fortified Blank

• Description: An aliquot of reagent water to which a known concentration (0.6 ppb) is added to verify method performance in the absence of sample matrix.
• Preparation Guidelines
 • If finished drinking water samples are included in the batch, properly quenched DI H₂O must be used to prepare the LFB. If only analyzing raw drinking water, do not quench the DI H₂O.
 • Location on plate: Immediately after the Low-CV and again at the end of the plate immediately after the last sample.
• Acceptable range: Must be ≥ 0.36 or ≤ 0.84 ppb
Analysis Batch Controls
Laboratory Fortified Blank: Preparation

Measure 10 mL of DI H₂O into two separate 20 mL vials

Pipette 120 uL of the Abraxis 50 ppb standard into each sample vial

Three Freeze/Thaw Cycles

Filter each separately with glass fiber filters
Analysis Batch Controls
Laboratory Fortified Sample Matrix and LFSM Duplicate

• Description: Aliquot of a new or previously analyzed sample to which a known concentration of microcystins is added. It is used to determine if the sample matrix contributes bias to the results.
• Preparation guidelines:
 • If analyzing only drinking water, a quenched sample must be used to prepare the LFSM and LFSMD.
 • If only analyzing raw water, a non-quenched sample must be used to prepare the LFSM and LFSMD.
 • If analyzing both raw and finished drinking water, a representative set of LFSM and LFSMDs must accompany the samples.
 • If more than 20 samples are to be analyzed of either type, a second representative set of LFSM and LFSMD must be analyzed.
• Location on plate: Immediately after the first LFB. If analyzing more than one set of LFSM and LFSMD, the second set will follow half of the samples.
• Acceptable range:

Calculate the mean percent recovery (%R) for each LFSM and LFSMD set using the equation:

\[
% R = \frac{(A - B)}{C} \times 100\%
\]

Where,
A = mean measured concentration of the LFSM and LFSMD,
B = measured concentration in the unfortified sample
C = fortification concentration (0.5 ppb for drinking water, 1.0 ppb for ambient water).
Subtract the unfortified sample recovery (B) from the mean fortified spiked recovery (A) even if the concentration in the unfortified sample is less than the MRL (0.3 ppb).

Calculate the relative percent difference (RPD) between the LFSM and LFSMD using the following equation:

\[
RPD = \frac{|LFSMD - LFSM|}{(LFSMD + LFSM)/2} \times 100\%
\]

• The %R for the LFSM and LFSMD must be ≥ 60% and ≤ 140%.
• The RPD for the LFSM and LFSMD should be ≤ 40%.
Analysis Batch Controls
LFSM and LFSMD Acceptability Criteria

Calculate the mean percent recovery (%R) for each LFSM and LFSMD set using the equation:

\[\%R = \left(\frac{A - B}{C} \right) \times 100\% \]

Where,
A = mean measured concentration of the LFSM and LFSMD,
B = measured concentration in the unfortified sample
C = fortification concentration (0.5 ppb for drinking water, 1.0 ppb for ambient water).

Subtract the unfortified sample recovery (B) from the mean fortified spiked recovery (A) even if the concentration in the unfortified sample is less than the MRL (0.3 ppb).

Calculate the relative percent difference (RPD) between the LFSM and LFSMD using the following equation:

\[RPD = \left(\frac{|LFSMD - LFSM|}{(LFSMD + LFSM)/2} \right) \times 100\% \]

- The %R for the LFSM and LFSMD must be ≥ 60% and ≤ 140%.
- The RPD for the LFSM and LFSMD should be ≤ 40%.
Analysis Batch Controls
LFSM/LFSMD: Preparation (Drinking Water)

Select a new or previously quenched sample, invert several times to mix and measure 10 mL into two separate 20 mL sample vials

Pipette 100 uL of the Abraxis 50 ppb standard into each sample vial, and vortex or invert repeatedly to mix

Three Freeze/Thaw Cycles

Filter each separately with glass fiber filters
Select a new or previously analyzed sample, invert several times to mix and measure 10 mL into two separate 20 mL sample vials.

Pipette 200 μL of the Abraxis 50 ppb standard into each sample vial, and vortex or invert repeatedly to mix.

Three Freeze/Thaw Cycles

Filter each separately with glass fiber filters.
Analysis Batch Sample Plate Map

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Std. 0</td>
<td>Std. 4</td>
<td>LFB 1</td>
<td>S2</td>
<td>S6</td>
<td>S10</td>
<td>S14</td>
<td>LFSMD</td>
<td>S20</td>
<td>S24</td>
<td>S28</td>
<td>S32</td>
</tr>
<tr>
<td></td>
<td>0.00 ppb</td>
<td>2.0 ppb</td>
<td>0.60 ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Std. 0</td>
<td>Std. 4</td>
<td>LFB 1</td>
<td>S2</td>
<td>S6</td>
<td>S10</td>
<td>S14</td>
<td>LFSMD</td>
<td>S20</td>
<td>S24</td>
<td>S28</td>
<td>S32</td>
</tr>
<tr>
<td></td>
<td>0.00 ppb</td>
<td>2.0 ppb</td>
<td>0.60 ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Std. 1</td>
<td>Std. 5</td>
<td>LFSCM</td>
<td>S3</td>
<td>S7</td>
<td>S11</td>
<td>S15</td>
<td>S17</td>
<td>S21</td>
<td>S25</td>
<td>S29</td>
<td>S33</td>
</tr>
<tr>
<td></td>
<td>0.15 ppb</td>
<td>5.0 ppb</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Std. 1</td>
<td>Std. 5</td>
<td>LFSCM</td>
<td>S3</td>
<td>S7</td>
<td>S11</td>
<td>S15</td>
<td>S17</td>
<td>S21</td>
<td>S25</td>
<td>S29</td>
<td>S33</td>
</tr>
<tr>
<td></td>
<td>0.15 ppb</td>
<td>5.0 ppb</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Std. 2</td>
<td>LRB 1</td>
<td>LFSCMD</td>
<td>S4</td>
<td>S8</td>
<td>S12</td>
<td>S16</td>
<td>S18</td>
<td>S22</td>
<td>S26</td>
<td>S30</td>
<td>LFB 2</td>
</tr>
<tr>
<td></td>
<td>0.40 ppb</td>
<td>< 0.15 ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60 ppb</td>
</tr>
<tr>
<td>F</td>
<td>Std. 2</td>
<td>LRB 1</td>
<td>LFSCMD</td>
<td>S4</td>
<td>S8</td>
<td>S12</td>
<td>S16</td>
<td>S18</td>
<td>S22</td>
<td>S26</td>
<td>S30</td>
<td>LFB 2</td>
</tr>
<tr>
<td></td>
<td>0.40 ppb</td>
<td>< 0.15 ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60 ppb</td>
</tr>
<tr>
<td>G</td>
<td>Std. 3</td>
<td>Low-CV</td>
<td>S1</td>
<td>S5</td>
<td>S9</td>
<td>S13</td>
<td>LFSM</td>
<td>S19</td>
<td>S23</td>
<td>S27</td>
<td>S31</td>
<td>LRB 2</td>
</tr>
<tr>
<td></td>
<td>1.0 ppb</td>
<td>0.30 ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.15 ppb</td>
</tr>
<tr>
<td>H</td>
<td>Std. 3</td>
<td>Low-CV</td>
<td>S1</td>
<td>S5</td>
<td>S9</td>
<td>S13</td>
<td>LFSM</td>
<td>S19</td>
<td>S23</td>
<td>S27</td>
<td>S32</td>
<td>LRB 2</td>
</tr>
<tr>
<td></td>
<td>1.0 ppb</td>
<td>0.30 ppb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.15 ppb</td>
</tr>
</tbody>
</table>

NOTES:
- Additional sets of LFSCM/LFSMD may be required depending upon the presence of both ambient and drinking water or if greater than 20 samples of either type are analyzed.
- A 546 Quality Control Sample (546 QCS) must be analyzed with each new lot of calibrators. Place it after the first set of LFSCM/LFSMD at the beginning of the plate. In this example, replace both S1 replicates with the Method 546 QCS.
- The plate map above shows the analysis of an entire microtiter plate. As the number of samples on a plate increases, the potential for bias due to unequal incubation periods, otherwise known as drift, increases. To avoid the potential for drift, ensure that the addition of antibody, conjugate, color and stop are completed within two minutes. If any of these steps cannot be completed in less than two minutes, reduce the number of samples being analyzed on a single plate accordingly. To increase the speed at which the addition of these solutions are performed, a repeater pipette, 8 channel pipette or an automated analyser (CAAS) can be used to load these reagents.
Initial Demonstration of Capability Controls

Acceptable Sample Background

• Preparation guidelines:
 • Use a portion of the remaining DI H₂O treated with sodium thiosulfate prepared for the demonstration of precision and accuracy to prepare Acceptable Sample Background controls
• Location on plate: scattered throughout plate, first one after the Method 546 QCS
• Acceptability criteria:
 • The result for each of the five LRBs must be less than one-half the concentration of the MRL, or ≤ 0.15 ppb.
Initial Demonstration of Capability Controls
Acceptable Sample Background: Preparation

Aliquot 5 mL of quenched DI H₂O into five separate sample 20 mL sample vials

Three Freeze/Thaw Cycles

Filter each separately with glass fiber filters
Initial Demonstration of Capability Controls
Precision and Accuracy

• Location on plate: Scattered throughout plate after the first Acceptable Sample Background control
• Acceptability Criteria:
 • The % Relative Standard Deviation (%RSD) between the seven sets of well duplicates must be ≤ 15%.
 • The mean recovery for the seven replicates must be ≥ 70% and ≤ 130% of the target value, or ≥ 0.35 and ≤ 0.65 ppb. A macro for the calculation of recoveries and %RSD can be obtained from Abraxis upon request.
Initial Demonstration of Capability Controls
Precision and Accuracy: Preparation

Measure 200 mL in an appropriate glass container and add two 10 mg tablets of sodium thiosulfate, mix well by inversion to dissolve.

Aliquot 10 ml of the above solution into seven separate 20 mL vials, along with 100 uL of the Abraxis 50 ppb standard. Mix well by inversion or vortex.

Complete 3 Freeze/Thaw cycles, and use a glass fiber filter to filter each one in a separate vial.
Initial Demonstration of Capability Controls

IDC MRL

• Preparation guidelines:
 • Use a portion of the remaining DI H$_2$O treated with sodium thiosulfate prepared for the demonstration of precision and accuracy to prepare IDC MRLs
• Location: scattered throughout plate, first one after the first Acceptable Sample Background control
• Acceptability criteria:
 • The Upper PIR Limit must be $\leq 150\%$ and the Lower PIR Limit must be $\geq 50\%$. A macro for the calculation of recoveries can be obtained from Abraxis upon request.
Initial Demonstration of Capability Controls
IDC MRL

Aliquot 10 mL of treated DI H₂O into seven separate 20 mL vials

Pipette 60 μL of the Abraxis 50 ppb standard into each sample vial, and vortex or invert repeatedly to mix

Three Freeze/Thaw Cycles

Filter each separately with glass fiber filters
Method 546 QCS

• Analyze a Method 546 QCS, which is contained within the Abraxis Method 546 Accessory Kit, each time an IDC is attempted or when a new lot of calibration standards is used.
• Analyze the Method 546 QCS provided in the Abraxis 546 Accessory Pack with the IDC/Analysis Batch. No additional preparation is necessary. Do not use the QCS contained in the base Microcystins kit (PNs 520011 and 520011OH).
• Do not add sodium thiosulfate, lyse or filter the 546 QCS
Initial Demonstration of Capability Sample Plate Map

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Std. 0</td>
<td>Std. 4</td>
<td>S46 QCS</td>
<td>ASB LRB2</td>
<td>P&A3</td>
<td>IDC MRL4</td>
<td>P&A6</td>
<td>LFB 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Std. 0</td>
<td>Std. 4</td>
<td>S46 QCS</td>
<td>ASB LRB2</td>
<td>P&A3</td>
<td>IDC MRL4</td>
<td>P&A6</td>
<td>LFB 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Std. 1</td>
<td>Std. 5</td>
<td>ASB LRB1</td>
<td>P&A2</td>
<td>IDC MRL3</td>
<td>ASB LRB5</td>
<td>IDC MRL6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Std. 1</td>
<td>Std. 5</td>
<td>ASB LRB1</td>
<td>P&A2</td>
<td>IDC MRL3</td>
<td>ASB LRB5</td>
<td>IDC MRL6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Std. 2</td>
<td>Low-CV</td>
<td>P&A1</td>
<td>IDC MRL2</td>
<td>ASB LRB4</td>
<td>P&A5</td>
<td>P&A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Std. 2</td>
<td>Low-CV</td>
<td>P&A1</td>
<td>IDC MRL2</td>
<td>ASB LRB4</td>
<td>P&A5</td>
<td>P&A7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Std. 3</td>
<td>LFB 1</td>
<td>IDC MRL1</td>
<td>ASB LRB3</td>
<td>P&A4</td>
<td>IDC MRL5</td>
<td>IDC MRL7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Std. 3</td>
<td>LFB 1</td>
<td>IDC MRL1</td>
<td>ASB LRB3</td>
<td>P&A4</td>
<td>IDC MRL5</td>
<td>IDC MRL7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- **ASB** = Acceptable Sample Background LRBs, target value ≤ 0.15 ppb
- **P&A** = Precision and Accuracy Samples, target value 0.50 ppb
- **IDC MRL** = Initial Demonstration of Capability Minimum Reporting Level Sample, target value 0.30 ppb
Questions or Comments?

Zak Hutchinson / Technical Support Specialist
zhutchinson@abraxiskits.com
Abraxis, Inc
Office: (215) 357-3911 / Fax: (215) 357-5232
124 Railroad Drive Warminster, PA 18974
www.abraxiskits.com