Importance of STEC Determination

Shiga toxin-producing E. coli (STEC) are food-borne pathogens that cause gastrointestinal illness, hemorrhagic colitis, and hemolytic uremic syndrome. As few as 100 cells can cause disease leading to serious illness or death. *Escherichia coli* O157:H7 is the STEC serotype most often implicated in outbreaks; however, there are numerous other STEC serotypes that have caused serious human illness and outbreaks. STEC that cause human illness were added as notifiable pathogens to the Nationally Notifiable Diseases Surveillance System in 2000. From 2000-2010, 7695 cases were reported; 5688 were associated with the serogroup O157, and the 83% of the other STEC were serogroups O26, O45, O103, O111, O121 and O145. However, other serogroups, including 91, O113, O104, have also caused serious human illness. *Escherichia coli* from each of the serogroups listed above have been found in ground beef, cattle hides, and in feces. Bovine feces can be a source of environmental contamination (soil, water) which can lead to secondary contamination of produce growing in fields.

It is difficult to distinguish pathogenic *E. coli* strains from non-pathogenic *E. coli* strains because the former rarely possess any distinguishing phenotypic or biochemical characteristics which differ from the latter. Methods such as the Shiga toxin ELISA described in this User’s Guide have been developed to determine the presence of virulence markers, and therefore the presence of pathogenic *E. coli*. This ELISA method is part of the testing protocol utilized and mandated by the FSIS for testing ground beef and beef trim, and described in the USDA-FSIS Microbiology Laboratory Guidebook (MLG) Chapter 5.08 “Detection and Isolation of *Escherichia coli* O157:H7 from Meat Products”.

References

USDA-FSIS Microbiological Laboratory Guidebook Chapter 5.08 “Detection, Isolation and Identification of *Escherichia coli* O157:H7 from Meat Products and Carcass and Environmental Sponges”

Shiga Toxin 2 ELISA (Microtiter Plate)

Enzyme-Linked Immunosorbent Assay for the Determination of Shiga toxin 2 (Stx 2) in Ground Beef Samples

Product No. 542010

1. **General Description**

The Abraxis Shiga Toxin 2 ELISA is an immunoassay for the qualitative screening of Shiga Toxin 2 (Stx 2). The Abraxis Shiga Toxin 2 ELISA detects all known variants of Stx 2, including Stx 2a, 2b, 2c, 2d, 2e, 2f, and 2g. This test is suitable for the qualitative screening of Stx 2 in ground beef samples (please refer to the appropriate technical bulletins for additional matrices procedures). Shiga toxin is a virulence marker for O157 and non-O157 Shiga toxin producing *Escherichia coli* (STEC). The Abraxis Shiga Toxin 2 ELISA may be used as part of the United States Department of Agriculture Food Safety and Inspection Service (USDA FSIS) beef screening protocol described in the USDA FSIS Microbiological Laboratory Guidebook (MLG), chapters 5.08, 5A.04, and 5B.05.

2. **Safety Instructions**

The positive control in the test kit contains small amounts of Shiga toxin 2. In addition, the substrate (color) solution contains tetramethylbenzidine and the stop solution contains diluted sulfuric acid. Avoid contact of stopping solution with skin and mucous membranes. If these reagents come in contact with skin, wash with water. Excess beef and incubated media should be considered biological waste, and decontaminated, along with any contaminated equipment, by autoclaving or another effective method.

3. **Storage and Stability**

The Stx 2 ELISA should be stored in the refrigerator (4–8°C). The solutions must be allowed to reach room temperature (20-25°C) before use. Reagents may be used until the expiration date on the box.

4. **Test Principle**

The test is an indirect ELISA based on the recognition of Shiga toxin 2 by specific antibodies. Ground beef samples are incubated with a medium that encourages *E. coli* growth, if present, and shiga toxin production. If present in a sample, Stx 2 is bound by an antibody immobilized on the wells of the microtiter plate. After a washing step, a second antibody is added which binds to the Stx 2 bound to the wells. A second washing step is followed by the addition of an HRP labeled antibody which binds to the existing antigen/antibody complex in the wells. After a final wash and addition of the substrate solution, a color signal is generated. The intensity of the blue color is proportional to the concentration of Stx 2 present in the sample. The color reaction is stopped after a specified time and the color is evaluated using an ELISA reader. The result of the evaluation is compared to a known value to determine whether the sample is positive or below the limit of Stx 2 detection.

5. **Limitations of the Stx 2 ELISA, Possible Test Interference**

Although many organic and inorganic compounds commonly found in samples have been tested and found not to interfere with this test, due to the high variability of compounds that might be found in samples, test interferences caused by matrix effects cannot be completely excluded. Samples must be diluted and incubated as instructed in the sample preparation section (Section D) or appropriate technical bulletin before testing in the ELISA.

Mistakes in handling the test also can cause errors. Possible sources for such errors include: improper storage of the test kit, incorrect pipetting sequence or inaccurate volumes of the reagents, too long or too short incubation times during the immune and/or substrate reactions, extreme temperatures (lower than 10°C or higher than 30°C) during the test performance. The assay procedure should be performed away from direct or indirect sunlight.

The Abraxis Stx 2 ELISA kit provides screening results only and does not differentiate between Shiga toxin-producing bacteria. Any positive results should be confirmed by PCR or another approved method.
A. Reagents and Materials Provided
1. Microtiter plate (8 wells X 12 strips) coated with a capture antibody, in a resealable aluminum pouch
2. Stx 2 positive control as Stx 2 (1): 0.5 ng/mL (ppb), 3 mL
3. Stx 2 negative control, 3 mL
4. Anti-Stx 2 Antibody Solution, 12 mL
5. Enzyme Conjugate, 12 mL
6. Wash Buffer (5X) Concentrate, 100 mL, must be diluted before use, see Test Preparation (Section C)
7. Substrate (Color) Solution (TMB), 12 mL
8. Stop Solution, 6 mL (handle with care)

B. Additional Materials (not delivered with the test kit)
1. Micro-pipettes with disposable sterile plastic tips (20-1000 µL)
2. Multi-channel pipette (50-250 µL), stepper pipette (50-250 µL), or electronic repeating pipette with disposable sterile tips
3. Microtiter plate reader (wave length 450 nm with differential of 630 nm)
4. Sterile clear polypropylene bags with mesh (ca. 24” x 30-36”)
5. Stomacher (optional)
6. Modified tryptone soya broth with Novobiocin (mTSB+n) or other approved sample incubation medium
7. E. coli positive control (for inoculating media)
8. Incubator, static 42 ± 1°C
9. Automatic pipettor with 25 mL sterile disposable serological pipets
10. Deionized or distilled water
11. Container with 500 mL capacity (for diluting 1X Wash Buffer, see Test Preparation, Section C)
12. Paper towels or equivalent absorbent material
13. Timer
14. Pipette controller
15. 50 mL sterile disposable conical vials

C. Test Preparation

Micro-pipette equipment and pipette tips for pipetting the standards and the samples are necessary. In order to equalize the incubation periods on the entire microtiter plate, a multi-channel, stepping, or electronic repeating pipette is recommended for adding the enzyme conjugate, antibody, substrate, and stop solutions. Please only use the reagents and standards from one package lot in one test, as they have been adjusted in combination.

1. Adjust the microtiter plate and the reagents to room temperature before use.
2. Remove the number of microtiter plate strips required from the aluminum pouch. The remaining strips are stored in the aluminum pouch and zip-locked closed. Store the remaining kit in the refrigerator (4-8°C).
3. The control solutions, antibody, conjugate, substrate (color) and stop solutions are ready to use and do not require any further dilutions.
4. Dilute the Wash Solution (5X) Concentrate at a ratio of 1:5. If using the entire bottle (100 mL), add 400 mL of deionized or distilled water and mix thoroughly.
5. The stop solution must be handled with care as it contains diluted H2SO4.

D. Sample Preparation

Beef Samples
(see also USDA FSIS MLG Chapter 5.08: Detection, Isolation and Identification of Escherichia coli 0157:H7 from Meat Products and Carcass and Environmental Spongs)

NOTE: The Abraxis Stx 2 ELISA may be used with either beef screening samples (sample diluted 1:4 in media) OR outbreak related samples (sample diluted 1:10 in media)

1. Disinfect surface of sample packaging prior to opening.
 a. Screening samples: Prepare in a sterile strainer bag a 1:4 dilution (one part beef in three parts media, e.g. 25 g beef with 75 mL enrichment medium). Increase or decrease total volume incubated according to amount needed to prepare representative samples and perform all analyses.
 b. Outbreak related samples: Prepare in a sterile strainer bag a 1:10 dilution (one part beef in nine parts media, e.g. 10 g beef with 90 mL enrichment medium). Increase or decrease total volume incubated according to amount needed to prepare representative samples and perform all analyses.
2. Pummel or hand massage until clumps are dispersed.
3. The USDA requires that both a known positive sample and an unincubated medium control are incubated alongside each group of samples.
4. Incubate all bags for 15-22 hr at 42 ± 1°C.
5. After removing samples from incubator, mix gently by hand massaging to ensure uniformity and draw off 10-20 mL media from opposite side of mesh from beef sample.
6. Allow to settle 10-15 minutes in 50 mL conical vial. Gently decant top layer to a clean vial if desired, use as sample for ELISA. No further dilution is necessary.